Stable Zero Duality Gaps in Convex Programming: Complete Dual Characterisations with Applications to Semidefinite Programs∗
نویسندگان
چکیده
The zero duality gap that underpins the duality theory is one of the central ingredients in optimisation. In convex programming, it means that the optimal values of a given convex program and its associated dual program are equal. It allows, in particular, the development of efficient numerical schemes. However, the zero duality gap property does not always hold even for finite dimensional problems and it frequently fails for problems with nonpolyhedral constraints such as the ones in semidefinite programming problems. Over the years, various criteria have been developed ensuring zero duality gaps for convex programming problems. In the present work, we take a broader view of the zero duality gap property by allowing it to hold for each choice of linear perturbation of the objective function of the given problem. Globalising the property in this way permits us to obtain complete geometric dual characterisations of a stable zero duality gap in terms of epigraphs and conjugate functions. For convex semi-definite programs, we establish necessary and sufficient dual conditions for stable zero duality gaps, as well as for a universal zero duality gap in the sense that the zero duality gap property holds for each choice of constraint right-hand side and convex objective function. Our approach makes use of elegant conjugate analysis and Fenchel’s duality.
منابع مشابه
Projection: A Unified Approach to Semi-Infinite Linear Programs and Duality in Convex Programming
Fourier-Motzkin elimination is a projection algorithm for solving finite linear programs. Weextend Fourier-Motzkin elimination to semi-infinite linear programs which are linear programswith finitely many variables and infinitely many constraints. Applying projection leads to newcharacterizations of important properties for primal-dual pairs of semi-infinite programs suchas zero ...
متن کاملUniversal duality in conic convex optimization
Given a primal-dual pair of linear programs, it is well known that if their optimal values are viewed as lying on the extended real line, then the duality gap is zero, unless both problems are infeasible, in which case the optimal values are +∞ and −∞. In contrast, for optimization problems over nonpolyhedral convex cones, a nonzero duality gap can exist when either the primal or the dual is fe...
متن کاملStrong Duality for Semidefinite Programming
It is well known that the duality theory for linear programming (LP) is powerful and elegant and lies behind algorithms such as simplex and interior-point methods. However, the standard Lagrangian for nonlinear programs requires constraint qualifications to avoid duality gaps. Semidefinite linear programming (SDP) is a generalization of LP where the nonnegativity constraints are replaced by a s...
متن کاملOn Lagrangian Relaxation of Quadratic Matrix Constraints
Quadratically constrained quadratic programs (QQPs) play an important modeling role for many diverse problems. These problems are in general NP hard and numerically intractable. Lagrangian relaxations often provide good approximate solutions to these hard problems. Such relaxations are equivalent to semidefinite programming relaxations. For several special cases of QQP, e.g., convex programs an...
متن کاملExponential membership function and duality gaps for I-fuzzy linear programming problems
Fuzziness is ever presented in real life decision making problems. In this paper, we adapt the pessimistic approach tostudy a pair of linear primal-dual problem under intuitionistic fuzzy (I-fuzzy) environment and prove certain dualityresults. We generate the duality results using exponential membership and non-membership functions to represent thedecision maker’s satisfaction and dissatisfacti...
متن کامل